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1. Introduction

During the last decade, a large amount of work has been put into the understanding of the

duality between N = 4 super Yang-Mills and type IIB string theory on AdS5 × S5 [1 – 3].

An important discovery was that the theories on both sides of this correspondence are

governed by integrable structures [4 – 9].

Motivated by the development of new superconformal world-volume theories for mul-

tiple M2-branes [10 – 13], Aharony, Bergman, Jafferis and Maldacena recently proposed

a new class of superconformal field theories in 2+1 dimensions with N = 6 supersym-

metry, which are conjectured to describe N interacting M2-branes in a background of

AdS4 × S7/Zk [14, 15]. These ABJM theories have SU(N) × SU(N) gauge theory, with

Chern-Simons terms at level k for the gauge fields, and allows a ’t Hooft limit where

k,N → ∞ with the coupling λ = N/k fixed. In the large k limit, the membrane the-

ory is compactified so that the dual theory is given by type IIA string theory on an

AdS4 × CP
3 background.
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Part of the success in the studies of the AdS5/SYM4 duality lies in the identification

of the fundamental excitations in the two theories. In the weak coupling regime these are

magnons propagating along the gauge theory spin-chain [4]. At large coupling, magnons

with finite momentum evolve into giant magnons [16], describing localized solitonic excita-

tions on the world-sheet. The integrability of the theories was essential in these calculations.

Remarkably, integrable structures seem to appear also in the new AdS4/CFT3. Mina-

han and Zarembo [17] showed that the two-loop dilation operator of the scalar SU(4) sector

of the Chern-Simons theory is equivalent to an integrable Hamiltonian, and conjectured a

set of Bethe equations valid for the full two-loop theory (see also [18]). At strong coupling,

the type IIA action has been formulated in terms of a super-coset sigma model [19, 20],

and using the pure spinor formalism [21, 22]. Additionally an algebraic curve has been

constructed [23]. Both of these limits are incorporated in the proposed all-loop generaliza-

tion of the Bethe equations [24]. These Bethe equations have also been derived from the

proposed exact S-matrix of the theory [25].1

The spin-chain of ABJM differs from that of N = 4 SYM in that the SU(4) repre-

sentations alternate between adjacent sites.2 The spin-chain ground state preserves an

SU(2|2) subgroup of the full OSp(2, 2|6) symmetry of the gauge theory. The fundamental

excitations fall into two (2|2) multiplets [31, 25]. In addition there are quasi-bound states.

The theory has an important closed SU(2)×SU(2) subsector, which includes one excitation

from each fundamental multiplet.

At strong coupling, the spin-chain ground state corresponds to a point-like string

spinning on a great circle of each sphere [31 – 33, 23]. World-sheet excitations above this

ground state have been studied in the plane wave limit [32, 31, 34]. Additionally, two

different kinds of giant magnons have been found. The first one is in R × S2 × S2, where

the magnons live on one or both of the spheres [31, 34 – 38]. The other giant magnon

solution is spinning on R × RP
2 [31, 36]. In this paper, only the first kind of magnons will

be considered.

In recent years, one aspect of the AdS5/SYM4 duality that has attracted much interest

is that of finite size corrections and wrapping interactions. The gauge theory spectrum de-

rived from the Bethe equations is valid only for asymptotically large operators. For finite

size operators, corrections are expected to arise [39]. Recently the four loop corrections

stemming from wrapping interactions have been calculated directly from the gauge the-

ory [40 – 42], as well as using the thermodynamic Bethe ansatz (TBA) and the Lüscher

formulae [43].

On the string theory side, finite size corrections to the giant magnon dispersion relation

have been studied using direct sigma model calculations [44, 45], Lüscher formulae [46, 47],

the algebraic curves [48] and analogies with the sine-Gordon equation [49].

For the AdS4 × CP
3 theory, finite size effects in the Penrose limit have been consid-

ered [50], and the finite size corrections to the giant magnon dispersion relation have been

1Recently a mismatch between the string theory and Bethe ansatz results for the one-loop correction to

spinning strings. See [26 – 30] for discussions of this issue.
2Another important difference is that the scalars in ABJM transform as a 4 or a 4̄ under the SU(4)

R-symmetry, while in N = 4 SYM they transform as a 6.
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calculated for the case of two SU(2)× SU(2) magnons with equal momenta [51, 35, 52]. In

this paper we will consider finite size corrections to more general multi-magnon states in

the SU(2)× SU(2) sector. The calculation of finite size effects using different formulations

of the theory pose a good consistency check.

While this paper was being prepared, we received [53] which contains results that overlap

with parts of this paper.

2. Finite size corrections from the algebraic curve

The algebraic curve for giant magnons in AdS5×S5 was first given in [54], and was discussed

in more detail in [55]. In [48], the curve for a finite size magnon was constructed. Finite

size corrections were also discussed in a finite gap context in [56, 57]. In this section we

build upon these solutions to obtain the energy shift for finite size giant magnons in the

SU(2) × SU(2) Chern-Simons theory.

2.1 The algebraic curve

Using the algebraic curve of [23], a classical string state in AdS4 ×CP
3 is mapped to a ten-

sheeted Riemann surface. The branches qi(x), i = 1, . . . , 10 of this surface are called the

quasi-momenta and are parametrized by a spectral parameter x ∈ C. Pairs of these sheets

can be connected by square root cuts Cij . When going through the cut the quasi-momenta

get shifted by an integer multiple of 2π

qi(x + iǫ) − qj(x − iǫ) = 2πnij , (2.1)

where qi and qj are evaluated on opposing side of the cut, and nij ∈ Z are called mode

numbers.

The charges of the string state corresponding to a specific curve is given by the inversion

symmetry and the curve’s asymptotic behavior at large x. Some important properties of

the algebraic curve are summarized in appendix B.

2.2 Ansatz for the algebraic curve in the SU(4) sector

Our aim is to find quasi-momenta q1(x), . . . , q10(x) with the correct poles and symmetries,

and having the right large x asymptotics. In this paper we will treat the SU(2)× SU(2) ⊂
SU(4) sector and use the ansatz [24]

q1(x) = −q10(x) = α
x

x2 − 1
, (2.2)

q2(x) = −q9(x) = α
x

x2 − 1
, (2.3)

q3(x) = −q8(x) = α
x

x2 − 1
+ Gr(x) + Gr

(

1

x

)

− Gv

(

1

x

)

− Gu

(

1

x

)

− Gr(0) + Gv(0) + Gu(0), (2.4)
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q4(x) = −q7(x) = α
x

x2 − 1
+ Gv(x) + Gu(x) − Gr(x) − Gr

(

1

x

)

+ Gr(0), (2.5)

q5(x) = −q6(x) = −Gv(x) + Gu(x) − Gv

(

1

x

)

+ Gu

(

1

x

)

+ Gv(0) − Gu(0). (2.6)

The subscripts of the resolvents Gv , Gu and Gr correspond to the excitation numbers of

appendix A, and indicate which Dynkin labels of SU(4) are excited by a cut in the resolvent.

2.3 SU(2) giant magnon

As a simple check of the ansatz (2.2)–(2.6) we will derive the dispersion relation of a single

SU(2) giant magnon. The resolvents then take the form

Gv(x) =
1

i
log

x − X+

x − X−
, Gu(x) = Gr(x) = 0. (2.7)

In order to obtain conserved charges of the magnon we have to consider the large x behavior

of the quasi-momenta, and compare it with the expected limits from appendix B3

q1(x) = q2(x) =
αx

x2
+ · · · =

E ± S

2gx
+ · · · , (2.8)

q4(x) + q3(x) = − i

x

(

X+ − X− − 1

X+
+

1

X−
+ 2iα

)

+ · · · = − J

2gx
+ · · · (2.9)

q5(x) = q4(x) − q3(x) = − i

x

(

X+ − X− +
1

X+
− 1

X−

)

+ · · · = − Q

2gx
+ · · · . (2.10)

and we can find from (2.8) that E = 2gα and S = 0. To check the inversion symmetry we

calculate4

πm = q3(1/x) + q4(x) = −i log
X+

X−
≡ p. (2.11)

Solving (2.10) together with the momentum equation (2.11) for X± we get

X± =

Q
2

+
√

Q2

4
+ 16g2 sin p

2

4g sin p
2

e±i p
2 . (2.12)

Plugging this into (2.9) gives the dispersion relation

E − J

2
=

√

Q2

4
+ 16g2 sin2

p

2
=

√

Q2

4
+ 2λ sin2

p

2
. (2.13)

This dispersion relation for the SU(2) magnon is the same as the “small” giant magnon

dispersion relation considered by Gaiotto et al. [31] and by Shenderovich [36].

3The coupling g is related to the ’t Hooft coupling λ by

λ = 8g
2
.

4When considering a single giant magnon we can relax the level matching condition so that p 6∈ πZ.
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2.3.1 Finite size corrections to SU(2) giant magnon

Let us continue by computing the finite size correction to a single magnon in the SU(2)

sector. Inspired by [48] we use the resolvents5

Gv(x) = G(x) = −2i log

√
x − X+ +

√
x − Y +

√
x − X− +

√
x − Y −

, Gu(x) = Gr(x) = 0. (2.14)

The function G(x) has a log cut between the points X+ and X− and two square root cuts

connecting X± and Y ±. In the limit Y ± → X±, the resolvent G(x) → −i log x−X+

x−X− , which

gives the previous single magnon solution.

The momentum of the magnon can be found from the inversion symmetry

p = q3(1/x) + q4(x) = −2i log

√
X+ +

√
Y +

√
X− +

√
Y −

. (2.15)

and the conserved charges from the large x asymptotics

J

2g
≈ E

g
+

i

2

(

X+ − X− + Y + − Y − − 2√
X+Y +

+
2√

X−Y −

)

, (2.16)

Q

2g
≈ − i

2

(

X+ − X− + Y + − Y − +
2√

X+Y +
− 2√

X−Y −

)

. (2.17)

To solve the equations (2.16) and (2.17) we introduce

iδeiφ = Y + − X+, (2.18)

and solve the equations perturbatively in δ (for g ≫ 1). The result is

E − J

2
= 4g sin

p

2
− g

δ2

4
sin

p

2
cos(p − 2φ). (2.19)

In order to calculate δ and φ we need to use the condition that the sheets q4 and q5

are connected by square root cuts. This reads

q4(x + iǫ) − q5(x − iǫ) = 2πn, x ∈ C, (2.20)

where C is one of the cuts. Focusing on the upper cut we get the condition

2πn =
E

2g

x

x2 − 1
+ G(x + iǫ) + G(x − iǫ) + G(1/x) − G(0). (2.21)

The first part of the right hand side is the same as in the N = 4 case, so we can incorporate

the result from that case, which is

G(x + iǫ) + G(x − iǫ) = −2i log
Y + − X+

x − X−
+ 4i log

(

1 +

√

x − Y −

x − X−

)

. (2.22)

5These resolvents was used in [57] to calculate the finite size corrections to the giant magnon dispersion

relation in N = 4 SYM.
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We are interested in the leading order behavior as Y ± → X± in the formula (2.22). Hence

we can evaluate it at x = X+. We then get

E

2g

x

x2 − 1
+ G(x + iǫ) + G(x − iǫ) ≈ E

2g

X+

X+2 − 1
+ G(X+ + iǫ) + G(X+ − iǫ) + O(δ)

≈ E

2g

X+

X+2 − 1
− 2i log

ieiφδ

4(X+ − X−)
+ O(δ)

≈ −i
E

4g sin p
2

− 2i log
eiφδ

8 sin p
2

+ O(δ).

The last two terms in (2.21) do not appear in the N = 4 case and need to be treated

a bit more carefully. They are given by

G(1/X+) − G(0) = −i log
1

X+ − X+

1

X+ − X−
+ i log

X+

X−
+ O(δ)

= −i log



cos
p

2
+ i sin

p

2

√

Q2

4
+ 16g2 sin2 p

2

Q
2



− p

2
+ O(δ)

≈ −i log
8ig sin2 p

2

Q
− p

2
+ O(δ).

Collecting the terms we get the condition

2πn = −i
E

4g sin p
2

− 2i log
eiφδ

8 sin p
2

− i log
8ig sin2 p

2

Q
− p

2
+ O(δ), (2.23)

which gives

δ =

√

8Q

g
e
− E

8g sin
p
2 , φ =

p

4
+ nπ ± π

4
, (2.24)

where the sign of the last term depends on how we chose the branch of 1
2

log i. The finite

size dispersion relation is now given by

E − J

2
= 4g sin

p

2
± 2Q sin

p

2
sin
(p

2
− 2πn

)

e
− E

4g sin
p
2 . (2.25)

The form of this correction is very different from the one in the N = 4 case, since the leading

order correction is suppressed by a factor 1/g in addition to the exponential suppression.

Moreover the N = 4 corrections are independent of the charge Q for Q ≪ g. In the present

case, the leading corrections vanish if we let Q → 0.

To identify more easily the correction we can consider a physical state consisting of

M magnons with momentum p and charge Q. This is described by shifting the resolvent

G(x) → M · G(x). The correction is now given by

E − J

2
= 4Mg sin

p

2

[

1 ± Q

2g
sin

(

p

2
− 2πn

M

)

e
−

E/M

4g sin
p
2

]

. (2.26)
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For a physical configuration p = πm
M

for some integer m. For a fundamental magnon

(Q = 1) we get

δE = 2 sin2 p

2
e
− E

4g sin
p
2 , n = 0 (2.27)

δE = 0, n =
p

4π
. (2.28)

2.4 SU(2) × SU(2) giant magnon

We now want to consider giant magnons in the SU(2) × SU(2) sector. The simplest con-

figuration consists of one fundamental magnon in each SU(2) sector, with equal momenta

p. For this case can use the ansatz (2.2)–(2.6) with

Gu(x) = Gv(x) = G(x) = −2i log

√
x − X+ +

√
x − Y +

√
x − X− +

√
x − Y −

(2.29)

and Gr(x) = 0. Following the same procedure as in the SU(2) case this gives

E − J = 8g sin
p

2
− g

δ2

2
sin

p

2
cos(p − 2φ). (2.30)

Again we need to consider the condition that the quasi-momenta should have square

root cuts. The two cuts are at the same position, but connect different sheets. In order

to write down the condition we imagine separating them slightly, so that we can consider

two points on opposite sides of one of the cuts, but on the same side of the other. Our

condition is then

2πn = q4(x + iǫ) − q5(x − iǫ) =
E

2g

x

x2 − 1
+ G(x + iǫ) + G(x − iǫ). (2.31)

Note that the terms of the kind G(1/x) − G(0) exactly cancel between the two magnons.

Equation (2.31) is identical to the corresponding equation in N = 4, and the solution is

δ = 8 sin
p

2
e
− E

8g sin
p
2 , φ = −π − πn. (2.32)

Thus the finite size dispersion relation for this configuration is

E = E − J = 8g sin
p

2

[

1 − 4 sin2 p

2
cos(p − 2πn)e

− E

4g sin
p
2

]

. (2.33)

Again a simple generalization to M equal magnons in each sector leads to two natural

choices for n:

δE = −32g sin3 p

2
cos p e

− E
4g sin

p
2 , n = 0, (2.34)

δE = −32g sin3 p

2
e
− E

4g sin
p
2 , n =

p

2π
. (2.35)
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2.4.1 General multi-magnon states

Using the algebraic curve we can also calculate the finite size corrections to a general

multi-magnon state in the SU(2) × SU(2) sector. Hence we consider a state consisting of

M magnons in the SU(2)v sector and M̂ magnons in the SU(2)u sector, having momenta

pi and p̂i respectively.

At infinite J , the dispersion relation will be given by

E∞ =

M
∑

Ei +

M̂
∑

Êi, Ei = 4g sin
pi

2
, Êi = 4g sin

p̂i

2
. (2.36)

At finite J this will get corrections, and we will write

E =
M
∑

i=1

(

Ei + δEi

)

+
M̂
∑

i=1

(

Êi + δÊi

)

. (2.37)

As an ansatz for the algebraic curve, we use a generalization of the previous one with

Gv(x) =

M
∑

i=1

Gi(x) =

M
∑

i=1



−2i log

√

x − X+
i +

√

x − Y +
i

√

x − X−
i +

√

x − Y −
i



 , (2.38)

Gu(x) =

M
∑

i=1

Ĝi(x) =

M̂
∑

i=1



−2i log

√

x − X̂+
i +

√

x − Ŷ +
i

√

x − X̂−
i +

√

x − Ŷ −
i



 . (2.39)

For definiteness let us consider the first magnon in SU(2)v . Following the previous proce-

dure we get

δE1 = −g
δ2

4
sin

p1

2
cos(p1 − 2φ). (2.40)

Again we calculate δ and φ by requiring that

q4(x + iǫ) − q5(x − iǫ) = 2πn. (2.41)

Writing this out we get for x in C+
1 , the cut connecting the branch points X+

1 and Y +
1 ,

2πn =
E

2g

x

x2 − 1
+ G1(x + iǫ) + G1(x − iǫ) + G1(1/x) − G1(0)

+

M
∑

i=2

(

Gi(1/x) − Gi(0)
)

−
M̂
∑

i=1

(

Ĝi(1/x) − Ĝi(0)
)

. (2.42)

The first row of this equation is identical to the one in the one-magnon case. The second

row induces interactions between the magnons. From our previous results we have

E

2g

x

x2 − 1
+ G1(x + iǫ) + G1(x − iǫ) + G1(1/x) − G1(0) ≈

− i
E

4g sin p1

2

− 2i log
eiφδ

8 sin p1

2

− i log
8ig sin2 p1

2

Q1

− p1

2
+ O(δ). (2.43)

– 8 –
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Moreover

Gi

(

1

x

)

− Gi(0) ≈ Gi

(

1

X+
1

)

− Gi(0)

≈ −i log

1

X+

1

− X+
i

1

X+

1

− X−
i

+ i log
X+

i

X−
i

≈ −i log
sin p1+pi

4

sin p1−pi
4

− pi

2
,

and similarly for Ĝi. Thus

M
∑

i=2

(

Gi(1/x) − Gi(0)
)

−
M̂
∑

i=1

(

Ĝi(1/x) − Ĝi(0)
)

≈

− i log

(

M
∏

i=2

sin p1+pi

4

sin p1−pi

4

)

+ i log





M̂
∏

i=1

sin p1+p̂i

4

sin p1−p̂i

4



−
M
∑

i=2

pi

2
+

M̂
∑

i=1

p̂i

2
. (2.44)

Collecting these results we get

δE1 = 2Q1 sin
p1

2

M
∏

i=2

sin2 p1−pi

4

sin2 p1+pi

4

M̂
∏

i=1

sin2 p1+p̂i

4

sin2 p1−p̂i

4

× sin



p1 −
M
∑

i=1

pi

2
+

M̂
∑

i=1

p̂i

2
+ 2πn



 e
− E

4g sin
p1
2 . (2.45)

As in N = 4, the contribution from the magnon interactions is related to the magnon

S-matrix [48]. Note that magnons in the same sector contribute with a different sign than

magnons in the opposite sector.

3. Finite size corrections from the Lüscher µ-term

The second approach to the finite size effects is based on the so called Lüscher formulae

obtained for the first time by Lüscher [58] for a relativistic field theory on a cylinder and

derived in [39] for general dispersion relations.

The Lüscher formulae can be derived in perturbation theory, from Feynman diagrams

with virtual particles wrapping the world-sheet. Depending on what class of diagram

one considers, there are two corrections, usually referred to as the µ-term and the F-

term [58, 59]. The first of these give a correction to the classical energy, while the latter

corresponds to a one-loop shift. We will focus only on the µ-term. For a general dispersion

relation it is given by [46]

δEµ
a = −i

(

1 − E ′(p)

E ′(q̃∗)

)

eiq∗ · res
q=q̃

∑

b

Sba
ba(q∗, p). (3.1)

Many of the following results can be easy obtained from the AdS5 × S5 case.

– 9 –
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3.1 SU(2) giant magnon

We start from the computations for an SU(2) giant magnon. The dispersion relation of a

fundamental giant magnon in AdS4 × CP
3 is given by

E4 = E − J

2
=

√

1

4
+ 16g2 sin2 p

2
, (3.2)

while the corresponding relation for the AdS5 × S5 case is

E5 = E − J =

√

1 + 16g2 sin2
p

2
. (3.3)

Note that 2E4 equals E5 if we shift g → 2g and E → 2E in E5. Hence we can import

kinematical results from N = 4 to N = 6, provided we make this shift of the energy and

the coupling.

The matrix part cannot be obtained so easily from the AdS5 ×S5 case so we have give

it some more attention. As described in [25], there are two types of fundamental excitations

in N = 6 superconformal Chern-Simons theory. We will refer to these as excitations of

type A and B. Correspondingly the S-matrix can be divided into two parts – the matrices

SAA and SBB describing scattering of particles of the same type, and the matrices SAB

and SBA describing scattering of particles of different types. We write these S-matrices as

SAA(p1, p2) = SBB(p1, p2) = S0(p1, p2)Ŝ(p1, p2), (3.4)

SAB(p1, p2) = SBA(p1, p2) = S̃0(p1, p2)Ŝ(p1, p2), (3.5)

where Ŝ is the SU(2|2)-invariant S-matrix of [60] with g appropriately shifted as noted

above. The scalar factors S0 and S̃0 are given by

S0(p1, p2) =
1 − 1

x+

1
x−
2

1 − 1

x−
1

x+

2

σ(p1, p2), (3.6)

S̃0(p1, p2) =
x−

1 − x+
2

x+
1 − x−

2

σ(p1, p2), (3.7)

where σ(p1, p2) is the BES dressing factor [61].

The relevant S-matrix coefficients are

a1 =
x−

2 − x+
1

x+
2 − x−

1

η1η2

η̃1η̃2

(3.8)

a2 =
x−

2 − x+
1

x+
2 − x−

1

(x−
1 − x+

1 )(x−
2 − x+

2 )

x+
1 x+

2 − x−
1 x−

2

η1η2

η̃1η̃2

(3.9)

a6 =
x−

2 − x+
1

x+
2 − x−

1

η2

η̃2

. (3.10)

The phase factors η depend on the choice of basis. In the string frame

η1

η̃1

=

√

x+
2

x−
2

,
η2

η̃2

=

√

x−
1

x+
1

, (3.11)
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while in the spin chain frame
η1

η̃1

=
η2

η̃2

= 1. (3.12)

We will consider a single fundamental magnon of A-type. In order to calculate the

Lüscher µ-term, we need to know the poles of the S-matrix. Using the above expressions

for the SU(2) sector we see that SBA(p1, p2) has no poles while SAA(p1, p2) has a physical

pole at x−
1 = x+

2 . The position of this pole is the same as for a single SU(2) magnon in

N = 4. Since the pole positions agree, we can directly import the result for the kinematical

part from [46]. Thus

δEµ
a = − i

2
sin2 p

2
e
− J

8g sin
p
2 · res

q=q̃

∑

b

Sba
ba(q∗, p). (3.13)

Following [46] we can express the S-matrix in terms of ai

∑

b

Sab
ab(q∗, p) = S0(q∗, p)(2a1 + a2 + 2a6). (3.14)

and using the formulae for ai obtain the result which depends only on the frame we choose

res
q→q̃

∑

b

Sab
ab(q∗, p) =

1

x−
1

′ · res
x−
1
→x+

2

∑

b

Sab
ab(q∗, p) (3.15)

=
ie−i

p
2

sin2 p
2

· res
x−
1
→x+

2

∑

b

Sab
ab(q∗, p) (3.16)

=
i

g sin3 p
2

· η1

η̃1

η2

η̃2

· σ(x1, x2). (3.17)

Now we can plug it into the formula for µ-term

δEµ
a =

e
− J

4g sin
p
2

2g sin p
2

· η1

η̃1

η2

η̃2

· σ(x1, x2). (3.18)

The value of the dressing factor at the pole is given by the same expression as in N = 4,

namely [46]

σ2(x1, x2) = −16g2

e2
e−ip sin4 p

2
. (3.19)

Putting things together the µ-term is

δEµ
a =

2i

e
sin

p

2
e
− J

8g sin
p
2 , string frame, (3.20)

δEµ
a =

2i

e
sin

p

2
e
− J

8g sin
p
2 e−i p

2 , spin chain frame. (3.21)

The correction to the dispersion relation should be real. As argued in [62], the derivation

of the µ-term involves an analytical continuation of a momentum integral into the complex

plane. This may introduce an unphysical complex phase. Hence the correction to the

energy is given by the real part of the above expressions,

δE = 0, string frame, (3.22)

δE =
2

e
sin2 p

2
e
− J

8g sin
p
2 = 2 sin2 p

2
e
− E

4g sin
p
2 , spin chain frame. (3.23)
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We can now compare this result to the result of the algebraic curve calculation. If we

consider a fundamental magnon with Q = 1 and let n = 0 in (2.25) we get exactly the

above result from the spin chain frame. Choosing n = p/4π gives a vanishing correction,

like in the string frame. At the moment we lack a physical explanation for this result.

3.2 SU(2) × SU(2) giant magnon

In order to calculate the corrections to a multi-magnon state we need the generalized

Lüscher formula of Hatsuda and Suzuki [47].6 The two-magnon µ-term is given by

δEµ
a1a2

= 2
∑

b

(−1)Fb

[

1 − E ′
a1

(p1)

E ′
b(q

∗
1)

]

e−iq∗1J res
q=q̃∗

1

Sba1

ba1
(q1, p1)Sba2

ba2
(q∗1 , p2). (3.24)

Since the two magnons are in different SU(2) sectors, one of the S-matrices will be of the

type SAA or SBB , while the other will be of the type SAB or SBA. Hence the full S-matrix

factor will be of the form

S0(q, p)S̃0(q, p)Ŝ1b
1b(q, p)Ŝ1b

1b(q, p). (3.25)

But this is the exact same structure as for the SU(2|2)2 S-matrix of N = 4. Moreover, the

full µ-term now has the form of the one magnon correction in N = 4. Thus we can just

use the result of [46] and write

δE = Re

[

−32g sin2 p

2
e
− E

4g sin
p
2

(

η1η2

η̃1η̃2

)2
]

. (3.26)

Again there are two choices for the phase factors η:

δE = −32g sin3 p

2
e
− E

4g sin
p
2 string frame, (3.27)

δE = −32g sin3 p

2
cos(p)e

− E
4g sin

p
2 spin chain frame. (3.28)

4. Comparing the results

The calculation of the finite size corrections to the two magnon configuration in SU(2) ×
SU(2) which we considered, closely follows the calculation of finite size corrections for a

single magnon in AdS5 × S5. In the string frame our final result was

E = 8g sin
p

2

(

1 − 4 sin2 p

2
e
− E

4g sin
p
2

)

(4.1)

= 2
√

2λ sin
p

2

(

1 − 4

e2
sin2 p

2
e
− J√

2λ sin
p
2

)

(4.2)

As in that case we find perfect agreement between the results of the finite gap and

Lüscher calculations. Similar to the SU(2) magnon there is a correspondence between the

choice of frame for the S-matrix when calculating the Lüscher term, and the choice of

branch, or mode number, in the finite gap system.

6Essentially the same formula was independently given by Bajnok and Janik [43].
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5. Conclusions

In this paper we studied the finite size corrections for giant magnon states in the SU(2) ×
SU(2) sector using the algebraic curve as well as the Lüscher µ-term. For the case of one

excitation in each SU(2), with both excitations carrying the same momenta, the resulting

corrections perfectly match those of previous calculations [51, 35, 52]. It is encouraging that

both the algebraic curve and the Lüscher term give the same result as a direct string theory

calculation. An interesting future extension of this work would be to use the algebraic curve

and the Lüscher formulae to calculate finite size corrections to giant magnons embedded

in RP
2.

The result for a single SU(2) magnon is a bit harder to interpret, since the result of

the Lüscher term is not real. In itself this could be a sign that some contributions, such as

those of the bound states, are missing. However, similar behavior was observed previously

in [62], and the real part of the result perfectly matches the result from the algebraic curve.

Moreover the choice of the string frame versus spin-chain frame in the SU(2|2) S-matrix

corresponds to different choices of the mode number of the curve.7 The agreement between

the two calculations give a good consistency check between the algebraic curve [23] and the

S-matrix proposed in [25]. It would be interesting to work out in detail the relation between

the choice of frame for the S-matrix and the choice of mode number in the algebraic curve.

The generic correction is proportional to the R-charge Q, and not to g as in N = 4.

Hence the classical correction vanishes for fundamental magnons. From the algebraic curve

perspective, it seems like setting Q = 0 forces the finite size magnon curve back to a curve

describing an infinite J magnon. Moreover, if we use the string frame for the S-matrix,

the resulting µ-term vanishes identically. This could be another sign of an instability.

The problem of giving a physical interpretation of these results deserves some attention.

For example it would be interesting to study the results from an explicit sigma model

construction of a single finite size SU(2) magnon.

The exceptional case is when we have two magnons with equal momenta. The correc-

tions are then enhanced to become finite. In both the Lüscher and finite gap calculations

this can be traced back to the appearance of extra singularities.

Acknowledgments

We would like to thank J. Minahan and R. Janik for their comments on the

manuscript. OOS would also like to thank V. Giangreco Marotta Puletti for many

interesting discussions.

A. Notation

The SU(4) Dynkin labels [p1, q, p2] are related to the operator length L and the excitation

7Also for N = 4 the choice of basis for the S-matrix in the Lüscher term corresponds to a choice of mode

numbers for the algebraic curve. However, the Lüscher term is real in the string frame, so only this case

has been generally considered.
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numbers Mu, Mv and Mr by

[p1, q, p2] = [L − 2Mu + Mr,Mu + Mv − 2Mr, L − 2Mv + Mr]. (A.1)

We assign the SO(6) ∼= SU(4) R-charges J1, J2 and J3 as

J1 = q +
p2 + p1

2
= L − Mr, (A.2)

J2 =
p2 + p1

2
= L + Mr − Mu − Mv, (A.3)

J3 =
p2 − p1

2
= Mu − Mv, (A.4)

We also introduce the charges

J = J1 + J2 = 2L − Mu − Mv and Q = J1 − J2 = Mu + Mv − 2Mr. (A.5)

B. Properties of algebraic curve

This appendix summarize some properties of the quasi-momenta of the algebraic curve for

N = 6 superconformal Chern-Simons.

• dependence of quasi-momenta















q1(x)

q2(x)

q3(x)

q4(x)

q5(x)















= −















q10(x)

q9(x)

q8(x)

q7(x)

q6(x)















(B.1)

• condition for cuts

qi(x + iǫ) − qj(x − iǫ) = 2πnij (B.2)

• synchronization of poles at x = ±1















q1(x)

q2(x)

q3(x)

q4(x)

q5(x)















= −















q10(x)

q9(x)

q8(x)

q7(x)

q6(x)















=
1

2

1

x ∓ 1















α±

α±

α±

α±

0















+ · · · (B.3)

• inversion symmetry (m ∈ Z)















q1(1/x)

q2(1/x)

q3(1/x)

q4(1/x)

q5(1/x)















=















0

0

πm

πm

0















+















−q2(x)

−q1(x)

−q4(x)

−q3(x)

+q5(x)















=















0

0

πm

πm

0















+















+q9(x)

+q10(x)

+q7(x)

+q8(x)

−q6(x)















(B.4)
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• asymptotic behavior at x → ∞














q1(x)

q2(x)

q3(x)

q4(x)

q5(x)















=
1

2gx















E + S

E − S

L − Mr

L + Mr − Mu − Mv

Mv − Mu















=
1

2gx















E + S

E − S

J1

J2

−J3















(B.5)
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